Search results
Results from the WOW.Com Content Network
It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". [1] More precisely, given a function :, the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it.
A function f, its domain X, and its codomain Y are often specified by the notation :. One may write instead of = (), where the symbol (read 'maps to') is used to specify where a particular element x in the domain is mapped to by f. This allows the definition of a function without naming.
In some cases, when, for a given function f, the equation g ∘ g = f has a unique solution g, that function can be defined as the functional square root of f, then written as g = f 1/2. More generally, when g n = f has a unique solution for some natural number n > 0, then f m/n can be defined as g m.
A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1] The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the image of f. The image of a function is a subset of its codomain so it might not coincide with it.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
with domain, the range of , sometimes denoted or (), [4] may refer to the codomain or target set (i.e., the set into which all of the output of is constrained to fall), or to (), the image of the domain of under (i.e., the subset of consisting of all actual outputs of ). The image of a function is always a subset of the codomain of the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where now denotes the discrete-time Fourier transform (DTFT) operator. Consider two sequences u [ n ] {\displaystyle u[n]} and v [ n ] {\displaystyle v[n]} with transforms U {\displaystyle U} and V {\displaystyle V} :