Ads
related to: dot product cartesian coordinates calculator free printable template for invoiceswaveapps.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
where the operator denotes a dot product, ^ is the unit vector in the direction of , ‖ ‖ is the length of , and is the angle between and . [ 1 ] The term scalar component refers sometimes to scalar projection, as, in Cartesian coordinates , the components of a vector are the scalar projections in the directions of the coordinate axes .
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set R 2 {\displaystyle \mathbb {R} ^{2}} of the ordered pairs of real numbers (the real coordinate plane ), equipped with the dot product , is often called the Euclidean plane or standard Euclidean plane , since every Euclidean plane is isomorphic to it.
The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations. Dyadic notation was first established by Josiah Willard Gibbs in 1884. The notation and ...
In a geometric algebra for which the square of any nonzero vector is positive, the inner product of two vectors can be identified with the dot product of standard vector algebra. The exterior product of two vectors can be identified with the signed area enclosed by a parallelogram the sides of which are the vectors.
Ads
related to: dot product cartesian coordinates calculator free printable template for invoiceswaveapps.com has been visited by 10K+ users in the past month