Search results
Results from the WOW.Com Content Network
The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.
Solar-powered calculators are hand-held electronic calculators powered by solar cells mounted on the device. [1] They were introduced at the end of the 1970s. [2]Amorphous silicon has been used as a photovoltaic solar cell material for devices which require very little power, such as pocket calculators, because their lower performance compared to conventional crystalline silicon solar cells is ...
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
This class of marching-in-time computational techniques for Maxwell's equations uses either discrete Fourier or discrete Chebyshev transforms to calculate the spatial derivatives of the electric and magnetic field vector components that are arranged in either a 2-D grid or 3-D lattice of unit cells. PSTD causes negligible numerical phase ...
In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.
Maxwell developed a set of equations that could unambiguously describe the interrelationship between electric field, magnetic field, electric charge, and electric current. He could moreover prove that in a vacuum such a wave would travel at the speed of light , and thus light itself was a form of electromagnetic radiation.
All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...