Search results
Results from the WOW.Com Content Network
The simplest of these is called elliptic geometry and it is considered a non-Euclidean geometry due to its lack of parallel lines. [12] By formulating the geometry in terms of a curvature tensor, Riemann allowed non-Euclidean geometry to apply to higher dimensions. Beltrami (1868) was the first to apply Riemann's geometry to spaces of negative ...
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
Consequently, hyperbolic geometry has been called Bolyai-Lobachevskian geometry, as both mathematicians, independent of each other, are the basic authors of non-Euclidean geometry. Gauss mentioned to Bolyai's father, when shown the younger Bolyai's work, that he had developed such a geometry several years before, [ 64 ] though he did not publish.
The theorems of absolute geometry hold in hyperbolic geometry, which is a non-Euclidean geometry, as well as in Euclidean geometry. [9] Absolute geometry is inconsistent with elliptic geometry: in that theory, there are no parallel lines at all, but it is a theorem of absolute geometry that parallel lines do exist. However, it is possible to ...
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric ...
Euclidean geometry is an axiomatic system, in which all theorems ("true statements") are derived from a small number of simple axioms. Until the advent of non-Euclidean geometry, these axioms were considered to be obviously true in the physical world, so that all the theorems would be equally true. However, Euclid's reasoning from assumptions ...
One example: oriented (i.e., reflections not included) elliptic geometry (i.e., the surface of an n-sphere with opposite points identified) and oriented spherical geometry (the same non-Euclidean geometry, but with opposite points not identified) have isomorphic automorphism group, SO(n+1) for even n. These may appear to be distinct.
Egyptian geometry; Ancient Greek geometry Euclidean geometry. Pythagorean theorem; Euclid's Elements; Measurement of a Circle; Indian mathematics. Bakhshali manuscript; Modern geometry History of analytic geometry. History of the Cartesian coordinate system; History of non-Euclidean geometry; History of topology; History of algebraic geometry ...