enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5) , and the same number 21 is also the GCD of 105 and 252 − 105 = 147 .

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted (,).

  4. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    For example, if N = 84923, (by starting at 292, the first number greater than √ N and counting up) the 505 2 mod 84923 is 256, the square of 16. So (505 − 16)(505 + 16) = 0 mod 84923 . Computing the greatest common divisor of 505 − 16 and N using Euclid's algorithm gives 163, which is a factor of N .

  5. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  6. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  7. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    The Frobenius number exists as long as the set of coin denominations is setwise coprime. There is an explicit formula for the Frobenius number when there are only two different coin denominations, and , where the greatest common divisor of these two numbers is 1: . If the number of coin denominations is three or more, no explicit formula is known.

  8. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The greatest common divisor is the last non zero entry, 2 in the column "remainder". The computation stops at row 6, because the remainder in it is 0 . Bézout coefficients appear in the last two columns of the second-to-last row.

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will ...