Search results
Results from the WOW.Com Content Network
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
The dimensionless added mass coefficient is the added mass divided by the displaced fluid mass – i.e. divided by the fluid density times the volume of the body. In general, the added mass is a second-order tensor, relating the fluid acceleration vector to the resulting force vector on the body. [1]
A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass & distance from the axis. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment ...
The volume of a prism is the product of the area of the base by the height, i.e. the distance between the two base faces (in the case of a non-right prism, note that this means the perpendicular distance). The volume is therefore: =, where B is the base area and h is the height. The volume of a prism whose base is an n-sided regular polygon ...
This formula holds whether or not the cylinder is a right cylinder. [7] This formula may be established by using Cavalieri's principle. A solid elliptic right cylinder with the semi-axes a and b for the base ellipse and height h. In more generality, by the same principle, the volume of any cylinder is the product of the area of a base and the ...
However, if the time includes year as the unit of measure, the dimension of the rate is 1/year. Of course, there is nothing special (apart from the usual convention) about using year as a unit of time: any other time unit can be used. Furthermore, if rate and time include their units of measure, the use of different units for each is not ...
An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.. The second moment of area for an arbitrary shape R with respect to an arbitrary axis ′ (′ axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment) is defined as ′ = where