Search results
Results from the WOW.Com Content Network
McIlvaine buffer is a buffer solution composed of citric acid and disodium hydrogen phosphate, also known as citrate-phosphate buffer.It was introduced in 1921 by the United States agronomist Theodore Clinton McIlvaine (1875–1959) from West Virginia University, and it can be prepared in pH 2.2 to 8 by mixing two stock solutions.
Species concentrations calculated with the program HySS for a 10 mM solution of citric acid. pK a1 = 3.13, pK a2 = 4.76, pK a3 = 6.40. A weak acid may be defined as an acid with pK a greater than about −2. An acid with pK a = −2 would be 99 % dissociated at pH 0, that is, in a 1 M HCl solution. Any acid with a pK a less than about −2 is ...
In the case of citric acid, the overlap is extensive and solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5. Calculation of the pH with a polyprotic acid requires a speciation calculation to be performed. In the case of citric acid, this entails the solution of the two equations of mass balance:
Citric acid is a triprotic acid, with pK a values, extrapolated to zero ionic strength, of 3.128, 4.761, and 6.396 at 25 °C. [21] The pK a of the hydroxyl group has been found, by means of 13 C NMR spectroscopy, to be 14.4. [22] The speciation diagram shows that solutions of citric acid are buffer solutions between about pH 2 and pH 8. In ...
The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6] Simulated titration of an acidified solution of a weak acid (pK a = 4.7) with alkali
Britton and Robinson also proposed a second formulation that gave an essentially linear pH response to added alkali from pH 2.5 to pH 9.2 (and buffers to pH 12). This mixture consists of 0.0286 M citric acid , 0.0286 M monopotassium phosphate , 0.0286 M boric acid, 0.0286 M veronal and 0.0286 M hydrochloric acid titrated with 0.2 M sodium ...
At 25 °C (77 °F), solutions with a pH less than 7 are acidic, and solutions with a pH greater than 7 are basic. Solutions with a pH of 7 at 25 °C are neutral (i.e. have the same concentration of H + ions as OH − ions, i.e. the same as pure water). The neutral value of the pH depends on the temperature and is lower than 7 if the temperature ...
The smaller the difference, the more the overlap. The case of citric acid is shown at the right; solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5. According to Pauling's first rule, successive pK values of a given acid increase (pK a2 > pK a1). [28]