Search results
Results from the WOW.Com Content Network
The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits.
The circuit forms a harmonic oscillator for current, ... The general solution of the differential equation is an exponential in either root or a linear superposition ...
The quantum harmonic oscillator; The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential; The quantum pendulum; The three-dimensional potentials The rotating system The ...
This produces the general solution: = (+), where =. The exponential term outside of the parenthesis is the decay function and β is the damping coefficient. There are 3 categories of damped oscillators: under-damped, where β < ω 0 ; over-damped, where β > ω 0 ; and critically damped, where β = ω 0 .
The tuned circuit's action, known mathematically as a harmonic oscillator, is similar to a pendulum swinging back and forth, or water sloshing back and forth in a tank; for this reason the circuit is also called a tank circuit. [3]
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel.It provides the fundamental solution [3] φ(x,t) to
The term, also called the Duffing term, can be approximated as small and the system treated as a perturbed simple harmonic oscillator. The Frobenius method yields a complex but workable solution. Any of the various numeric methods such as Euler's method and Runge–Kutta methods can be used.