Ads
related to: 3 manifolds in math practice pdf with answerskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
The geometry and topology of three-manifolds is a set of widely circulated notes for a graduate course taught at Princeton University by William Thurston from 1978 to 1980 describing his work on 3-manifolds. They were written by Thurston, assisted by students William Floyd and Steven Kerchoff. [1]
In mathematics, in the topology of 3-manifolds, the sphere theorem of Christos Papakyriakopoulos gives conditions for elements of the second homotopy group of a 3-manifold to be represented by embedded spheres. One example is the following:
In topology, a branch of mathematics, a Dehn surgery, named after Max Dehn, is a construction used to modify 3-manifolds. The process takes as input a 3-manifold together with a link . It is often conceptualized as two steps: drilling then filling .
In mathematics, the Lickorish–Wallace theorem in the theory of 3-manifolds states that any closed, orientable, connected 3-manifold may be obtained by performing Dehn surgery on a framed link in the 3-sphere with ±1 surgery coefficients. Furthermore, each component of the link can be assumed to be unknotted.
If is a prime 3-manifold then either it is or the non-orientable bundle over , or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S 2 {\displaystyle S^{2}} over S 1 . {\displaystyle ...
The Weeks manifold is the hyperbolic three-manifold of smallest volume [3] and the Meyerhoff manifold is the one of next smallest volume. The complement in the three-sphere of the figure-eight knot is an arithmetic hyperbolic three-manifold [4] and attains the smallest volume among all cusped hyperbolic three-manifolds. [5]
Ads
related to: 3 manifolds in math practice pdf with answerskutasoftware.com has been visited by 10K+ users in the past month