enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    In numerical analysis, Romberg's method [1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array .

  3. Probability integral transform - Wikipedia

    en.wikipedia.org/wiki/Probability_integral_transform

    One use for the probability integral transform in statistical data analysis is to provide the basis for testing whether a set of observations can reasonably be modelled as arising from a specified distribution. Specifically, the probability integral transform is applied to construct an equivalent set of values, and a test is then made of ...

  4. Probabilistic numerics - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_numerics

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [19]Probabilistic numerics have also been studied for mathematical optimization, which consist of finding the minimum or maximum of some objective function given (possibly noisy or indirect) evaluations of that function at a set of points.

  5. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.

  6. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    The following Python code with the SymPy library will allow for calculation of the values of and to 20 digits of precision: from sympy import * def lag_weights_roots ( n ): x = Symbol ( "x" ) roots = Poly ( laguerre ( n , x )) . all_roots () x_i = [ rt . evalf ( 20 ) for rt in roots ] w_i = [( rt / (( n + 1 ) * laguerre ( n + 1 , rt )) ** 2 ...

  7. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    For a set of empirical measurements sampled from some probability distribution, the Freedman–Diaconis rule is designed approximately minimize the integral of the squared difference between the histogram (i.e., relative frequency density) and the density of the theoretical probability distribution.

  8. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    If g is a general function, then the probability that g(X) is valued in a set of real numbers K equals the probability that X is valued in g −1 (K), which is given by (). Under various conditions on g , the change-of-variables formula for integration can be applied to relate this to an integral over K , and hence to identify the density of g ...

  9. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    This probability is given by the integral of this variable's PDF over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1.