Search results
Results from the WOW.Com Content Network
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages.The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups.
In homotopy theory and algebraic topology, the word "space" denotes a topological space.In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.
In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré.
While this concept is too strict for some purposes in for example, homotopy theory, where "weak" structures arise in the form of higher categories, [2] strict cubical higher homotopy groupoids have also arisen as giving a new foundation for algebraic topology on the border between homology and homotopy theory; see the article Nonabelian ...
Given two directed paths γ and δ, a directed homotopy from γ to δ is a morphism of directed spaces h whose underlying map U(h) is a homotopy –in the usual sense– between the underlying paths U(γ) and U(δ). In algebraic topology, there is a homotopy from α to β if and only if there is a homotopy from β to α. Due to non ...
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology ) and abstract algebra (theory of modules and syzygies ) at the end of the 19th century, chiefly by ...
In general one uses singular homology; but if X and Y happen to be CW complexes, then this can be replaced by cellular homology, because that is isomorphic to singular homology. The simplest case is when the coefficient ring for homology is a field F. In this situation, the Künneth theorem (for singular homology) states that for any integer k,