Search results
Results from the WOW.Com Content Network
A torus, one of the most frequently studied objects in algebraic topology. Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
The two dashed paths shown above are homotopic relative to their endpoints. The animation represents one possible homotopy. In topology, two continuous functions from one topological space to another are called homotopic (from Ancient Greek: ὁμός homós "same, similar" and τόπος tópos "place") if one can be "continuously deformed" into the other, such a deformation being called a ...
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages.The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups.
A 1 homotopy theory is founded on a category called the A 1 homotopy category ().Simply put, the A 1 homotopy category, or rather the canonical functor (), is the universal functor from the category of smooth -schemes towards an infinity category which satisfies Nisnevich descent, such that the affine line A 1 becomes contractible.
In homotopy theory and algebraic topology, the word "space" denotes a topological space.In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.
In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré.
A homotopy pullback (or homotopy fiber-product) is the dual concept of a homotopy pushout. It satisfies the universal property of a pullback up to homotopy. [ citation needed ] Concretely, given f : X → Z {\displaystyle f:X\to Z} and g : Y → Z {\displaystyle g:Y\to Z} , it can be constructed as
In mathematics, homotopical algebra is a collection of concepts comprising the nonabelian aspects of homological algebra, and possibly the abelian aspects as special cases. . The homotopical nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of closed model categor