Search results
Results from the WOW.Com Content Network
Generator separately excited by battery Self exciting generators Series on left, shunt on right. A shunt generator is a type of electric generator in which field winding and armature winding are connected in parallel, and in which the armature supplies both the load current and the field current for the excitation (generator is therefore self excited).
A shunt in the ungrounded conductor must be insulated for the full circuit voltage to ground; the measuring instrument must be inherently isolated from ground or must include a resistive voltage divider or an isolation amplifier between the relatively high common-mode voltage and lower voltages inside the instrument. A shunt in the grounded ...
The key feature of the Ward Leonard control system is the ability to smoothly vary the speed of a DC motor, including reversing it, by controlling the field and hence the output voltage of a DC generator, as well as the field of the motor itself. As the speed of a DC motor is dictated by the supplied voltage, this gives simple speed control.
Description: A self-excited shunt-wound DC generator is shown on the left, and a magneto DC generator with permanent field magnets is shown on the right. The shunt-wound generator output varies with the current draw, while the magneto output is steady regardless of load variations. Page 196 Main Wikipedia article: Excitation (magnetic)
The critical field resistance is the maximum field circuit resistance for a given speed with which the shunt generator would excite. The shunt generator will build up voltage only if field circuit resistance is less than critical field resistance. It is a tangent to the open circuit characteristics of the generator at a given speed.
The critical field resistance is defined as the maximum field circuit resistance (for a given speed) with which the shunt generator would just excite. The shunt generator will build up voltage only if field circuit resistance is less than critical field resistance. It is a tangent to the open-circuit characteristics of the generator (at a given ...
The TL431 integrated circuit (IC) is a three-terminal adjustable precise shunt voltage regulator. With the use of an external voltage divider, a TL431 can regulate voltages ranging from 2.495 to 36 V, at currents up 100 mA. The typical initial deviation of reference voltage from the nominal 2.495 V level is measured in millivolts, the maximum ...
The circuit is due to Hendrik Bode who claims that the addition of the bridging resistor of a suitable value will cancel the parasitic resistance of the shunt inductor. The action of this circuit is clear if it is transformed into T topology – in this form there is a negative resistance in the shunt branch which can be made to be exactly ...