enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  3. Khatri–Rao product - Wikipedia

    en.wikipedia.org/wiki/Khatri–Rao_product

    This product assumes the partitions of the matrices are their columns. In this case m 1 = m, p 1 = p, n = q and for each j: n j = q j = 1. The resulting product is a mp × n matrix of which each column is the Kronecker product of the corresponding columns of A and B. Using the matrices from the previous examples with the columns partitioned:

  4. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, ⁡ = ⁡ for matrices A, B, and C of dimensions k×l, l×m, and m×n.

  5. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    The generalized Kronecker delta or multi-index Kronecker delta of order is a type (,) tensor that is completely antisymmetric in its upper indices, and also in its lower indices. Two definitions that differ by a factor of p ! {\displaystyle p!} are in use.

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry; Kronecker product or tensor product, the generalization to any size of the preceding; Khatri-Rao product and Face-splitting product

  7. Tensor product of graphs - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_graphs

    The adjacency matrix of G × H is the Kronecker (tensor) product of the adjacency matrices of G and H. If a graph can be represented as a tensor product, then there may be multiple different representations (tensor products do not satisfy unique factorization) but each representation has the same number of irreducible factors.

  8. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    The Kronecker sum is different from the direct sum, but is also denoted by ⊕. It is defined using the Kronecker product ⊗ and normal matrix addition. If A is n -by- n , B is m -by- m and I k {\displaystyle \mathbf {I} _{k}} denotes the k -by- k identity matrix then the Kronecker sum is defined by:

  9. Commutation matrix - Wikipedia

    en.wikipedia.org/wiki/Commutation_matrix

    Replacing A with A T in the definition of the commutation matrix shows that K (m,n) = (K (n,m)) T. Therefore, in the special case of m = n the commutation matrix is an involution and symmetric. The main use of the commutation matrix, and the source of its name, is to commute the Kronecker product: for every m × n matrix A and every r × q ...