Search results
Results from the WOW.Com Content Network
Rounding to a specified power is very different from rounding to a specified multiple; for example, it is common in computing to need to round a number to a whole power of 2. The steps, in general, to round a positive number x to a power of some positive number b other than 1, are:
At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...
There are two common rounding rules, round-by-chop and round-to-nearest. The IEEE standard uses round-to-nearest. Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there ...
For example, to round 1.25 to 2 significant figures: Round half away from zero rounds up to 1.3. This is the default rounding method implied in many disciplines [citation needed] if the required rounding method is not specified. Round half to even, which rounds to the nearest even number. With this method, 1.25 is rounded down to 1.2.
For a number written in scientific notation, this logarithmic rounding scale requires rounding up to the next power of ten when the multiplier is greater than the square root of ten (about 3.162). For example, the nearest order of magnitude for 1.7 × 10 8 is 8, whereas the nearest order of magnitude for 3.7 × 10 8 is 9.
Round to nearest, ties to even – rounds to the nearest value; if the number falls midway, it is rounded to the nearest value with an even least significant digit. Round to nearest, ties away from zero (or ties to away ) – rounds to the nearest value; if the number falls midway, it is rounded to the nearest value above (for positive numbers ...
A round number is mathematically defined as an integer which is the product of a considerable number of comparatively small factors [12] [13] as compared to its neighboring numbers, such as 24 = 2 × 2 × 2 × 3 (4 factors, as opposed to 3 factors for 27; 2 factors for 21, 22, 25, and 26; and 1 factor for 23).
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...