Search results
Results from the WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The cross product and triple product in three dimensions each admit both geometric and algebraic interpretations. The cross product u × v can be interpreted as a vector which is perpendicular to both u and v and whose magnitude is equal to the area of the parallelogram determined by the two vectors.
The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule
If geometric algebra is used the cross product b × c of vectors is expressed as their exterior product b∧c, a bivector. The second cross product cannot be expressed as an exterior product, otherwise the scalar triple product would result. Instead a left contraction [6] can be used, so the formula becomes [7]
If you'd instead put your $10,000 into an S&P 500 (SNPINDEX: ^GSPC) index fund, you would've had just $11,900 at the end of the year. An equal investment in an S&P 500 index fund would be worth ...
The cross product in relation to the exterior product. In red are the unit normal vector, and the "parallel" unit bivector. For example, torque is generally defined as the magnitude of the perpendicular force component times distance, or work per unit angle.