Search results
Results from the WOW.Com Content Network
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
1.442695 bits (log 2 e) – approximate size of a nat (a unit of information based on natural logarithms) 1.5849625 bits (log 2 3) – approximate size of a trit (a base-3 digit) 2 1: 2 bits – a crumb (a.k.a. dibit) enough to uniquely identify one base pair of DNA: 3 bits – a triad(e), (a.k.a. tribit) the size of an octal digit 2 2: nibble
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 1111011 2 implies that the number 1111011 is a base-2 number, equal to 123 10 (a decimal notation representation), 173 8 and 7B 16 (hexadecimal).
Q numbers are a ratio of two integers: the numerator is kept in storage, the denominator is equal to 2 n. Consider the following example: The Q8 denominator equals 2 8 = 256; 1.5 equals 384/256; 384 is stored, 256 is inferred because it is a Q8 number.
Symbol-specific names are also used; decimal point and decimal comma refer to a dot (either baseline or middle) and comma respectively, when it is used as a decimal separator; these are the usual terms used in English, [1] [2] [3] with the aforementioned generic terms reserved for abstract usage. [4] [5]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This decimal format can also represent any binary fraction a/2 m, such as 1/8 (0.125) or 17/32 (0.53125). More generally, a rational number a/b, with a and b relatively prime and b positive, can be exactly represented in binary fixed point only if b is a power of 2; and in decimal fixed point only if b has no prime factors other than 2 and/or 5.