Search results
Results from the WOW.Com Content Network
If a mechanical system has no losses, then the input power must equal the output power. This provides a simple formula for the mechanical advantage of the system. Let the input power to a device be a force F A acting on a point that moves with velocity v A and the output power be a force F B acts on a point that moves with velocity v B.
Mechanical power: P = W = J s −1: M L 2 T ... The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system ...
The ideal mechanical advantage is the ratio of the force out of the machine (load) to the force into the machine (effort), or =. Applying the constant power relationship yields a formula for this ideal mechanical advantage in terms of the speed ratio:
The input power provided by the cyclist is equal to the product of angular speed (i.e. the number of pedal revolutions per minute times 2π) and the torque at the spindle of the bicycle's crankset. The bicycle's drivetrain transmits the input power to the road wheel , which in turn conveys the received power to the road as the output power of ...
In mechanical engineering, mechanical efficiency is a dimensionless ratio that measures the efficiency of a mechanism or machine in transforming the power input to the device to power output. A machine is a mechanical linkage in which force is applied at one point, and the force does work moving a load at another point.
The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2. A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4. R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12– 13. ISBN 978-0-07-025734-4.
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):
A power system consists of a number of synchronous machines operating synchronously under all operating conditions. Under normal operating conditions, the relative position of the rotor axis and the resultant magnetic field axis is fixed. The angle between the two is known as the power angle, torque angle, or rotor angle. During any disturbance ...