Search results
Results from the WOW.Com Content Network
Given any random variables X 1, X 2, ..., X n, the order statistics X (1), X (2), ..., X (n) are also random variables, defined by sorting the values (realizations) of X 1, ..., X n in increasing order. When the random variables X 1, X 2, ..., X n form a sample they are independent and identically distributed. This is the case treated below.
Similar to convex order, Laplace transform order is established by comparing the expectation of a function of the random variable where the function is from a special class: () = (). This makes the Laplace transform order an integral stochastic order with the generator set given by the function set defined above with α {\displaystyle ...
Probability of a human birth giving triplets or higher-order multiples [18] Probability of being dealt a full house in poker 1.9×10 −3: Probability of being dealt a flush in poker 2.7×10 −3: Probability of a random day of the year being your birthday (for all birthdays besides Feb. 29) 4×10 −3: Probability of being dealt a straight in ...
A stochastic process is defined as a collection of random variables defined on a common probability space (,,), where is a sample space, is a -algebra, and is a probability measure; and the random variables, indexed by some set , all take values in the same mathematical space , which must be measurable with respect to some -algebra .
When the image (or range) of is finitely or infinitely countable, the random variable is called a discrete random variable [5]: 399 and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of .
The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely ...
Then (provided there is no systematic error) by the law of large numbers, the sequence X n will converge in probability to the random variable X. Predicting random number generation; Suppose that a random number generator generates a pseudorandom floating point number between 0 and 1. Let random variable X represent the distribution of possible ...
An example of a discrete-time stationary process where the sample space is also discrete (so that the random variable may take one of N possible values) is a Bernoulli scheme. Other examples of a discrete-time stationary process with continuous sample space include some autoregressive and moving average processes which are both subsets of the ...