enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  3. Outline of fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Outline_of_fluid_dynamics

    Couette flow – Model of viscous fluid flow between two surfaces moving relative to each other; Effusive limit; Free molecular flow – Gas flow with a relatively large mean free molecular path; Incompressible flow – Fluid flow in which density remains constant; Inviscid flowFlow of fluids with zero viscosity (superfluids)

  4. Shock-capturing method - Wikipedia

    en.wikipedia.org/wiki/Shock-capturing_method

    The Euler equations are the governing equations for inviscid flow. To implement shock-capturing methods, the conservation form of the Euler equations are used. For a flow without external heat transfer and work transfer (isoenergetic flow), the conservation form of the Euler equation in Cartesian coordinate system can be written as + + + = where the vectors U, F, G, and H are given by

  5. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    One example of this is the flow far from solid surfaces. In many cases, the viscous effects are concentrated near the solid boundaries (such as in boundary layers) while in regions of the flow field far away from the boundaries the viscous effects can be neglected and the fluid there is treated as it were inviscid (ideal flow).

  6. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    However, when the flow problem is put into a non-dimensional form, the viscous Navier–Stokes equations converge for increasing Reynolds numbers towards the inviscid Euler equations, suggesting that the flow should converge towards the inviscid solutions of potential flow theory – having the zero drag of the d'Alembert paradox.

  7. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...

  8. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Prandtl showed that for large Reynolds number, defined as =, and small angle of attack, the flow around a thin airfoil is composed of a narrow viscous region called the boundary layer near the body and an inviscid flow region outside. In applying the Kutta-Joukowski theorem, the loop must be chosen outside this boundary layer.

  9. Rayleigh's equation (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_equation_(fluid...

    Example of a parallel shear flow. In fluid dynamics, Rayleigh's equation or Rayleigh stability equation is a linear ordinary differential equation to study the hydrodynamic stability of a parallel, incompressible and inviscid shear flow. The equation is: [1] (″) ″ =,