enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  3. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a ...

  4. Outline of fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Outline_of_fluid_dynamics

    Couette flow – Model of viscous fluid flow between two surfaces moving relative to each other; Effusive limit; Free molecular flow – Gas flow with a relatively large mean free molecular path; Incompressible flow – Fluid flow in which density remains constant; Inviscid flowFlow of fluids with zero viscosity (superfluids)

  5. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    One example of this is the flow far from solid surfaces. In many cases, the viscous effects are concentrated near the solid boundaries (such as in boundary layers) while in regions of the flow field far away from the boundaries the viscous effects can be neglected and the fluid there is treated as it were inviscid (ideal flow).

  6. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    However, when the flow problem is put into a non-dimensional form, the viscous Navier–Stokes equations converge for increasing Reynolds numbers towards the inviscid Euler equations, suggesting that the flow should converge towards the inviscid solutions of potential flow theory – having the zero drag of the d'Alembert paradox.

  7. Rayleigh's equation (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_equation_(fluid...

    Example of a parallel shear flow. In fluid dynamics, Rayleigh's equation or Rayleigh stability equation is a linear ordinary differential equation to study the hydrodynamic stability of a parallel, incompressible and inviscid shear flow. The equation is: [1] (″) ″ =,

  8. Flow (psychology) - Wikipedia

    en.wikipedia.org/wiki/Flow_(psychology)

    Psychological flow state research has made significant strides in understanding the concept and its implications. However, like any scientific field, it is not without its criticisms and areas that require further investigation. This section explores the criticisms of flow state research and highlights the potential directions for future research.

  9. Stagnation point flow - Wikipedia

    en.wikipedia.org/wiki/Stagnation_point_flow

    A typical example of this flow is the forward stagnation point appearing in a flow past a sphere. Paul A. Libby (1974) [ 16 ] (1976) [ 17 ] extended Homann's work by allowing the solid wall to translate along its own plane with a constant speed and allowing constant suction or injection at the solid surface.