enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Excel's storage of numbers in binary format also affects its accuracy. [3] To illustrate, the lower figure tabulates the simple addition 1 + x − 1 for several values of x. All the values of x begin at the 15 th decimal, so Excel must take them into account. Before calculating the sum 1 + x, Excel first approximates x as a binary number

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.

  4. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.

  5. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    e=5; s=1.234571 − e=5; s=1.234567 ----- e=5; s=0.000004 e=−1; s=4.000000 (after rounding and normalization) The floating-point difference is computed exactly because the numbers are close—the Sterbenz lemma guarantees this, even in case of underflow when gradual underflow is supported.

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    e=5; s=1.234571 − e=5; s=1.234567 ----- e=5; s=0.000004 e=−1; s=4.000000 (after rounding and normalization) The floating-point difference is computed exactly because the numbers are close—the Sterbenz lemma guarantees this, even in case of underflow when gradual underflow is supported.

  7. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).

  8. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    The IEEE 754 standard [9] specifies a binary16 as having the following format: Sign bit: 1 bit; Exponent width: 5 bits; Significand precision: 11 bits (10 explicitly stored) The format is laid out as follows: The format is assumed to have an implicit lead bit with value 1 unless the exponent field is stored with all zeros.

  9. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.