Search results
Results from the WOW.Com Content Network
The initial aqueous solution contains hydrogen peroxide, an iodate, divalent manganese (Mn 2+) as catalyst, a strong chemically unreactive acid (sulphuric acid (H 2 SO 4) or perchloric acid (HClO 4) are good), and an organic compound with an active ("enolic") hydrogen atom attached to carbon which will slowly reduce free iodine (I 2) to iodide (I −).
In chemistry, the common-ion effect refers to the decrease in solubility of an ionic precipitate by the addition to the solution of a soluble compound with an ion in common with the precipitate. [1] This behaviour is a consequence of Le Chatelier's principle for the equilibrium reaction of the ionic association / dissociation .
In chemistry, pyramidal inversion (also umbrella inversion) is a fluxional process in compounds with a pyramidal molecule, such as ammonia (NH 3) "turns inside out". [1] [2] It is a rapid oscillation of the atom and substituents, the molecule or ion passing through a planar transition state. [3]
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...
The case for S N 2 reactions is quite different, as the lack of solvation on the nucleophile increases the rate of an S N 2 reaction. In either case (S N 1 or S N 2), the ability to either stabilize the transition state (S N 1) or destabilize the reactant starting material (S N 2) acts to decrease the ΔG ‡ activation and thereby increase the ...
Donnan equilibrium across a cell membrane (schematic). The Gibbs–Donnan effect (also known as the Donnan's effect, Donnan law, Donnan equilibrium, or Gibbs–Donnan equilibrium) is a name for the behaviour of charged particles near a semi-permeable membrane that sometimes fail to distribute evenly across the two sides of the membrane. [1]
Even at pH 7–7.2, the range of biological pH values, the aqueous phase may support an equilibrium between more than one protonated form. log p is determined from the analytical concentration of the substance in the aqueous phase, that is, the sum of the concentration of the different species in equilibrium. An organic MTBE solution is ...