Search results
Results from the WOW.Com Content Network
Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers. [1] [2] The components of a distributed system communicate and coordinate their actions by passing messages to
A distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in different application areas of distributed computing , such as telecommunications , scientific computing , distributed information processing , and real-time process control .
Distributed Data Management Architecture (DDM) is IBM's open, published software architecture for creating, managing and accessing data on a remote computer. DDM was initially designed to support record-oriented files; it was extended to support hierarchical directories, stream-oriented files, queues, and system command processing; it was further extended to be the base of IBM's Distributed ...
A distributed OS provides the essential services and functionality required of an OS but adds attributes and particular configurations to allow it to support additional requirements such as increased scale and availability. To a user, a distributed OS works in a manner similar to a single-node, monolithic operating system. That is, although it ...
CADP [1] (Construction and Analysis of Distributed Processes) is a toolbox for the design of communication protocols and distributed systems. CADP is developed by the CONVECS team (formerly by the VASY team) at INRIA Rhone-Alpes and connected to various complementary tools.
Distributed Artificial Intelligence (DAI) is an approach to solving complex learning, planning, and decision-making problems.It is embarrassingly parallel, thus able to exploit large scale computation and spatial distribution of computing resources.
Stream processing is essentially a compromise, driven by a data-centric model that works very well for traditional DSP or GPU-type applications (such as image, video and digital signal processing) but less so for general purpose processing with more randomized data access (such as databases). By sacrificing some flexibility in the model, the ...
Formally, we represent each event in a distributed flow as a quadruple of the form (x,t,k,v), where x is the location (e.g., the network address of a physical node) at which the event occurs, t is the time at which this happens, k is a version, or a sequence number identifying the particular event, and v is a value that represents the event payload (e.g., all the arguments passed in a method ...