Search results
Results from the WOW.Com Content Network
Magnetic flux. In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber (Wb; in derived units, volt–seconds or V⋅s), and the CGS unit is the maxwell. [1]
Spectral flux density. In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength (or, equivalently, per unit frequency). It is a radiometric rather than a photometric measure.
Where ∇ with the dot denotes divergence, and B is the magnetic flux density, the first integral is over a surface with oriented surface element . Where ∇ with the cross denotes curl , J is the current density and H is the magnetic field intensity , the second integral is a line integral around a closed loop C {\displaystyle C} with line ...
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx /cm 2 or g / Bi /s 2, while the oersted is the unit of H -field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted. The units for magnetic flux Φ, which is the integral of magnetic B ...
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre. The unit was announced during the General Conference on Weights and Measures in 1960 and is named [1] in honour of Serbian-American electrical and ...
t. e. In thermodynamics and thermal physics, the theoretical formulation of magnetic systems entails expressing the behavior of the systems using the Laws of Thermodynamics. Common magnetic systems examined through the lens of Thermodynamics are ferromagnets and paramagnets as well as the ferromagnet to paramagnet phase transition.
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
Steinmetz's equation. Steinmetz's equation, sometimes called the power equation, [1] is an empirical equation used to calculate the total power loss (core losses) per unit volume in magnetic materials when subjected to external sinusoidally varying magnetic flux. [2][3] The equation is named after Charles Steinmetz, a German-American electrical ...