Search results
Results from the WOW.Com Content Network
The Pearson's chi-squared test statistic is defined as . The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.
Chi-squared distribution, showing χ2 on the x -axis and p -value (right tail probability) on the y -axis. A chi-squared test (also chi-square or χ2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical ...
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =
Reduced chi-squared statistic. In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2][3] Its square root is called regression standard error, [4 ...
The chi-squared distribution is obtained as the sum of the squares of k independent, zero-mean, unit-variance Gaussian random variables. Generalizations of this distribution can be obtained by summing the squares of other types of Gaussian random variables. Several such distributions are described below.
Fisher's exact test is a statistical significance test used in the analysis of contingency tables. [1][2][3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes. It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation ...
Bartlett's test is used to test the null hypothesis, H0 that all k population variances are equal against the alternative that at least two are different. If there are k samples with sizes and sample variances then Bartlett's test statistic is. where and is the pooled estimate for the variance. The test statistic has approximately a distribution.
Chi-square automatic interaction detection (CHAID) [1][2][3] is a decision tree technique based on adjusted significance testing (Bonferroni correction, Holm-Bonferroni testing). The technique was developed in South Africa in 1975 and was published in 1980 by Gordon V. Kass, who had completed a PhD thesis on this topic.