Search results
Results from the WOW.Com Content Network
The eight-point algorithm is an algorithm used in computer vision to estimate the essential matrix or the fundamental matrix related to a stereo camera pair from a set of corresponding image points. It was introduced by Christopher Longuet-Higgins in 1981 for the case of the essential matrix.
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Point set registration is the process of aligning two point sets. Here, the blue fish is being registered to the red fish. In computer vision, pattern recognition, and robotics, point-set registration, also known as point-cloud registration or scan matching, is the process of finding a spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds.
In computer vision, the fundamental matrix is a 3×3 matrix which relates corresponding points in stereo images.In epipolar geometry, with homogeneous image coordinates, x and x′, of corresponding points in a stereo image pair, Fx describes a line (an epipolar line) on which the corresponding point x′ on the other image must lie.
A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]
The indexing expression for a 1-based index would then be ′ +. Hence, the efficiency benefit at run time of zero-based indexing is not inherent, but is an artifact of the decision to represent an array with the address of its first element rather than the address of the fictitious zeroth element.
Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...