Search results
Results from the WOW.Com Content Network
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
The arrivals in the process whose intensity is () are the "daughters" of the arrival at time . The integral ∫ 0 ∞ ϕ ( t ) d t {\displaystyle \int _{0}^{\infty }\phi (t)\,dt} is the average number of daughters of each arrival and is called the branching ratio .
A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).
The matrix geometric method and matrix analytic methods have allowed queues with phase-type distributed inter-arrival and service time distributions to be considered. [18] Systems with coupled orbits are an important part in queueing theory in the application to wireless networks and signal processing. [19]
and F(u) is the service time distribution and λ the Poisson arrival rate of jobs to the queue. Markov chains with generator matrices or block matrices of this form are called M/G/1 type Markov chains, [ 13 ] a term coined by Marcel F. Neuts .
Service times have an exponential distribution with rate parameter μ in the M/M/1 queue, where 1/μ is the mean service time. All arrival times and services times are (usually) assumed to be independent of one another. [2] A single server serves customers one at a time from the front of the queue, according to a first-come, first-served ...
The system is described in Kendall's notation where the G denotes a general distribution for both interarrival times and service times and the 1 that the model has a single server. [ 3 ] [ 4 ] Different interarrival and service times are considered to be independent, and sometimes the model is denoted GI/GI/1 to emphasise this.
It is an extension of an M/M/1 queue, where this renewal process must specifically be a Poisson process (so that interarrival times have exponential distribution). Models of this type can be solved by considering one of two M/G/1 queue dual systems, one proposed by Ramaswami and one by Bright.