enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    Most steady-flow devices operate under adiabatic conditions, and the ideal process for these devices is the isentropic process. The parameter that describes how efficiently a device approximates a corresponding isentropic device is called isentropic or adiabatic efficiency.

  3. Enthalpy–entropy chart - Wikipedia

    en.wikipedia.org/wiki/Enthalpy–entropy_chart

    In an isenthalpic process, the enthalpy is constant. [2] A horizontal line in the diagram represents an isenthalpic process. A vertical line in the h–s chart represents an isentropic process. The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be ...

  4. Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Rankine_cycle

    In an ideal Rankine cycle the pump and turbine would be isentropic: i.e., the pump and turbine would generate no entropy and would hence maximize the net work output. Processes 1–2 and 3–4 would be represented by vertical lines on the T–s diagram and more closely resemble that of the Carnot cycle.

  5. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C). For reversible processes, such as those found in the Carnot cycle:

  6. Brayton cycle - Wikipedia

    en.wikipedia.org/wiki/Brayton_cycle

    isobaric process – the compressed air then passes through a combustion chamber, where fuel is burned, heating that air—a constant-pressure process, since the chamber is open to flow in and out. isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines).

  7. Working fluid selection - Wikipedia

    en.wikipedia.org/wiki/Working_fluid_selection

    During an isentropic expansion process the working fluid always ends in the two-phase (also called wet) zone, if it is a wet-type fluid. If the fluid is of dry-type, the isentropic expansion necessarily ends in the superheated (also called dry) steam zone. If the working fluid is of isentropic-type, after an isentropic expansion process the ...

  8. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [2] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the stator or the fixed blades and then through the rotor or the moving blades. Due to the change in velocities there is a ...

  9. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    An ideal steam turbine is considered to be an isentropic process, or constant entropy process, in which the entropy of the steam entering the turbine is equal to the entropy of the steam leaving the turbine. No steam turbine is truly isentropic, however, with typical isentropic efficiencies ranging from 20 to 90% based on the application of the ...