Search results
Results from the WOW.Com Content Network
As mentioned earlier in the article the convection heat transfer coefficient for each stream depends on the type of fluid, flow properties and temperature properties. Some typical heat transfer coefficients include: Air - h = 10 to 100 W/(m 2 K) Water - h = 500 to 10,000 W/(m 2 K).
The above equation only takes into account the temperature differences and ignores two important parameters, being 1) solar radiative flux; and 2) infrared exchanges from the sky. The concept of T sol-air was thus introduced to enable these parameters to be included within an improved calculation. The following formula results:
In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference.
Simulation of thermal convection in the Earth's mantle. Hot areas are shown in red, cold areas are shown in blue. A hot, less-dense material at the bottom moves upwards, and likewise, cold material from the top moves downwards. Convection (or convective heat transfer) is the transfer of heat from
h = convection heat transfer coefficient; G = mass flux of the fluid; ρ = density of the fluid; c p = specific heat of the fluid; u = velocity of the fluid; It can also be represented in terms of the fluid's Nusselt, Reynolds, and Prandtl numbers: = where Nu is the Nusselt number;
This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...
In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.
This equation permits the prediction of an unknown transfer coefficient when one of the other coefficients is known. The analogy is valid for fully developed turbulent flow in conduits with Re > 10000, 0.7 < Pr < 160, and tubes where L/d > 60 (the same constraints as the Sieder–Tate correlation). The wider range of data can be correlated by ...