Search results
Results from the WOW.Com Content Network
T–s (entropy vs. temperature) diagram of an isentropic process, which is a vertical line segment The entropy of a given mass does not change during a process that is internally reversible and adiabatic.
This Process Path is a straight horizontal line from state one to state two on a P-V diagram. Figure 2. It is often valuable to calculate the work done in a process. The work done in a process is the area beneath the process path on a P-V diagram. Figure 2 If the process is isobaric, then the work done on the piston
Cycles composed entirely of quasistatic processes can operate as power or heat pump cycles by controlling the process direction. On a pressure–volume (PV) diagram or temperature–entropy diagram, the clockwise and counterclockwise directions indicate power and heat pump cycles, respectively.
The PV diagram is a particularly useful visualization of a quasi-static process, because the area under the curve of a process is the amount of work done by the system during that process. Thus work is considered to be a process variable , as its exact value depends on the particular path taken between the start and end points of the process.
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.
In an isenthalpic process, the enthalpy is constant. [2] A horizontal line in the diagram represents an isenthalpic process. A vertical line in the h–s chart represents an isentropic process. The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be ...
It may be considered to be a modification of the Brayton cycle in which the constant-pressure heat addition process of the Brayton cycle is replaced by a constant-volume (isochoric process) heat addition process. [1] It is a form of pressure gain combustion. Hence, the ideal Humphrey cycle consists of 4 processes:
Working fluids are often categorized on the basis of the shape of their T–s diagram. An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C).