enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Fatigue life scatter tends to increase for longer fatigue lives. Damage is irreversible. Materials do not recover when rested. Fatigue life is influenced by a variety of factors, such as temperature, surface finish, metallurgical microstructure, presence of oxidizing or inert chemicals, residual stresses, scuffing contact , etc.

  3. Vibration fatigue - Wikipedia

    en.wikipedia.org/wiki/Vibration_fatigue

    Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. [ 1 ]

  4. Structural load - Wikipedia

    en.wikipedia.org/wiki/Structural_load

    An impact load is one whose time of application on a material is less than one-third of the natural period of vibration of that material. Cyclic loads on a structure can lead to fatigue damage, cumulative damage, or failure. These loads can be repeated loadings on a structure or can be due to vibration.

  5. Metallurgical failure analysis - Wikipedia

    en.wikipedia.org/wiki/Metallurgical_failure_analysis

    Metallurgical failure analysis is the process to determine the mechanism that has caused a metal component to fail.It can identify the cause of failure, providing insight into the root cause and potential solutions to prevent similar failures in the future, as well as culpability, which is important in legal cases. [1]

  6. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.

  7. Thermo-mechanical fatigue - Wikipedia

    en.wikipedia.org/wiki/Thermo-Mechanical_Fatigue

    Fatigue alone is the driving cause of failure in this case, causing the material to fail before oxidation can have much of an effect. [1] TMF still is not fully understood. There are many different models to attempt to predict the behavior and life of materials undergoing TMF loading. The two models presented below take different approaches.

  8. Failure cause - Wikipedia

    en.wikipedia.org/wiki/Failure_cause

    They include corrosion, welding of contacts due to an abnormal electric current, return spring fatigue failure, unintended command failure, dust accumulation and blockage of mechanism, etc. Seldom only one cause (hazard) can be identified that creates system failures. The real root causes can in theory in most cases be traced back to some kind ...

  9. Corrosion fatigue - Wikipedia

    en.wikipedia.org/wiki/Corrosion_fatigue

    Curve A shows the fatigue behavior of a material tested in air. A fatigue threshold (or limit) is seen in curve A, corresponding to the horizontal part of the curve. Curves B and C represent the fatigue behavior of the same material in two corrosive environments. In curve B, the fatigue failure at high stress levels is retarded, and the fatigue ...