enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    The angles that Bragg's law predicts are still approximately right, but in general there is a lattice of spots which are close to projections of the reciprocal lattice that is at right angles to the direction of the electron beam. (In contrast, Bragg's law predicts that only one or perhaps two would be present, not simultaneously tens to hundreds.)

  3. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  4. Bragg plane - Wikipedia

    en.wikipedia.org/wiki/Bragg_plane

    Ray diagram of Von Laue formulation. In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. [1] The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography.

  5. Ewald's sphere - Wikipedia

    en.wikipedia.org/wiki/Ewald's_sphere

    In the Figure the red dot is the origin for the wavevectors, the black spots are reciprocal lattice points (vectors) and shown in blue are three wavevectors. For the wavevector k 1 {\displaystyle \mathbf {k_{1}} } the corresponding reciprocal lattice point g 1 {\displaystyle \mathbf {g_{1}} } lies on the Ewald sphere, which is the condition for ...

  6. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    where g = k out – k in is a reciprocal lattice vector that satisfies Bragg's law and the Ewald construction mentioned above. The measured intensity of the reflection will be square of this amplitude [21] [22]

  7. Dynamical theory of diffraction - Wikipedia

    en.wikipedia.org/wiki/Dynamical_theory_of...

    It also corrects for refraction at the Bragg condition and combined Bragg and specular reflection in grazing incidence geometries. A Bragg reflection is the splitting of the dispersion surface at the border of the Brillouin zone in reciprocal space. There is a gap between the dispersion surfaces in which no travelling waves are allowed.

  8. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...

  9. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane.