Search results
Results from the WOW.Com Content Network
A process during which the entropy remains constant is called an isentropic process, written = or =. [12] Some examples of theoretically isentropic thermodynamic devices are pumps, gas compressors, turbines, nozzles, and diffusers.
In an ideal Rankine cycle the pump and turbine would be isentropic: i.e., the pump and turbine would generate no entropy and would hence maximize the net work output. Processes 1–2 and 3–4 would be represented by vertical lines on the T–s diagram and more closely resemble that of the Carnot cycle.
isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines). Some of the work extracted by the turbine is used to drive the compressor. isobaric process – heat rejection (in the atmosphere). Actual Brayton cycle: adiabatic process – compression; isobaric process – heat ...
And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [2] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the stator or the fixed blades and then through the rotor or the moving blades. Due to the change in velocities there is a ...
Isentropic is the combination of the Greek word "iso" (which means - same) and entropy. When the change in flow variables is small and gradual, isentropic flows occur. The generation of sound waves is an isentropic process. A supersonic flow that is turned while there is an increase in flow area is also isentropic.
For reversible (ideal) processes, the area under the T–s curve of a process is the heat transferred to the system during that process. [1] Working fluids are often categorized on the basis of the shape of their T–s diagram. An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal ...
These equations govern the power, efficiencies and other factors that contribute to the design of turbomachines. With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1]
An ideal steam turbine is considered to be an isentropic process, or constant entropy process, in which the entropy of the steam entering the turbine is equal to the entropy of the steam leaving the turbine. No steam turbine is truly isentropic, however, with typical isentropic efficiencies ranging from 20 to 90% based on the application of the ...