enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  4. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by

  5. Tests of relativistic energy and momentum - Wikipedia

    en.wikipedia.org/wiki/Tests_of_relativistic...

    So relativistic energy and momentum significantly increase with speed, thus the speed of light cannot be reached by massive particles. In some relativity textbooks, the so-called "relativistic mass" = is used as well. However, this concept is considered disadvantageous by many authors, instead the expressions of relativistic energy and momentum ...

  6. Bondi k-calculus - Wikipedia

    en.wikipedia.org/wiki/Bondi_k-calculus

    Bondi k-calculus is a method of teaching special relativity popularised by Sir Hermann Bondi, that has been used in university-level physics classes (e.g. at the University of Oxford [1]), and in some relativity textbooks. [2]: 58–65 [3] The usefulness of the k-calculus is its simplicity.

  7. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The relativistic mass of a moving object is larger than the relativistic mass of an object at rest, because a moving object has kinetic energy. If the object moves slowly, the relativistic mass is nearly equal to the rest mass and both are nearly equal to the classical inertial mass (as it appears in Newton's laws of motion). If the object ...

  8. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    [1] This is achieved by photons to the extent that effects described by special relativity are able to describe those of such particles themselves. Several approaches exist as a means of describing the motion of single and multiple relativistic particles, with a prominent example being postulations through the Dirac equation of single particle ...

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun