Search results
Results from the WOW.Com Content Network
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
Fig 4–2. Relativistic time dilation, as depicted in a single Loedel spacetime diagram. Both observers consider the clock of the other as running slower. Relativistic time dilation refers to the fact that a clock (indicating its proper time in its rest frame) that moves relative to an observer is observed to run slower. The situation is ...
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame) ′ =
In relativity, proper time (from Latin, meaning own time) along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. [1]
Using two different operating criteria, they found differences of 33.8±6.8 ns/d and 36.5±5.8 ns/d, respectively, in agreement with general relativity. [23] Environmental factors were controlled far more precisely than in the Iijima experiment, in which many complicated corrections had to be applied.
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
A fuller explanation of the concept of coordinate time arises from its relations with proper time and with clock synchronization. Synchronization, along with the related concept of simultaneity, has to receive careful definition in the framework of general relativity theory, because many of the assumptions inherent in classical mechanics and classical accounts of space and time had to be removed.