Search results
Results from the WOW.Com Content Network
Irreversible adiabatic process: If the cylinder is a perfect insulator, the initial top-left state cannot be reached anymore after it is changed to the one on the top-right. Instead, the state on the bottom left is assumed when going back to the original pressure because energy is converted into heat.
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.
An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...
Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. This concept is used in many areas of physics and engineering.
Lieb and Yngvason's definition of adiabatic accessibility is: A state is adiabatically accessible from a state , in symbols (pronounced X 'precedes' Y), if it is possible to transform into in such a way that the only net effect of the process on the surroundings is that a weight has been raised or lowered (or a spring is stretched/compressed ...
A process is said to be physically reversible if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting this property that is referred to as charge recovery logic , adiabatic circuits , or adiabatic computing (see Adiabatic process ).
This Process Path is a straight horizontal line from state one to state two on a P-V diagram. Figure 2. It is often valuable to calculate the work done in a process. The work done in a process is the area beneath the process path on a P-V diagram. Figure 2 If the process is isobaric, then the work done on the piston
For adiabatic systems ˙ = so dS/dt ≥ 0. In other words: the entropy of adiabatic systems cannot decrease. In equilibrium the entropy is at its maximum. Isolated systems are a special case of adiabatic systems, so this statement is also valid for isolated systems. Now consider systems with constant temperature and volume.