Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere. Earth's early atmosphere consisted of accreted gases from the solar nebula , but the atmosphere changed significantly over time, affected by many factors such as volcanism , impact events , weathering and the evolution of ...
Planetary aeronomy studies the regions of the atmospheres of other planets [5] that correspond to the Earth's mesosphere, thermosphere, exosphere, and ionosphere. [6] In some cases, a planet's entire atmosphere may consist only of what on Earth constitutes the upper atmosphere, or only a portion of it.
The F region of the ionosphere is home to the F layer of ionization, also called the Appleton–Barnett layer, after the English physicist Edward Appleton and New Zealand physicist and meteorologist Miles Barnett. As with other ionospheric sectors, 'layer' implies a concentration of plasma, while 'region' is the volume that contains the said layer.
The movement of charge between the Earth's surface, the atmosphere, and the ionosphere is known as the global atmospheric electrical circuit. Atmospheric electricity is an interdisciplinary topic with a long history, involving concepts from electrostatics , atmospheric physics , meteorology and Earth science .
Layers of the ionosphere.The Kennelly–Heaviside layer is the E region. The Heaviside layer, [1] [2] sometimes called the Kennelly–Heaviside layer, [3] [4] named after Arthur E. Kennelly and Oliver Heaviside, is a layer of ionised gas occurring roughly between 90km and 150 km (56 and 93 mi) above the ground — one of several layers in the Earth's ionosphere.
The ionosphere is a region of the upper atmosphere, from about 80 km (50 miles) to 1000 km (600 miles) in altitude, where neutral air is ionized by solar photons, solar particles, and cosmic rays. When high-frequency signals enter the ionosphere at a low angle they are bent back towards the Earth by the ionized layer. [1]
Balloons cannot reach it because the air is too thin, but satellites cannot orbit there because the air is too thick. Hence, most experiments on the ionosphere give only small pieces of information. HAARP approaches the study of the ionosphere by following in the footsteps of an ionospheric heater called EISCAT near Tromsø, Norway. There ...