Search results
Results from the WOW.Com Content Network
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
The series was discovered independently by Johannes Hudde (1656) [1] and Isaac Newton (1665) but neither published the result. Nicholas Mercator also independently discovered it, and included values of the series for small values in his 1668 treatise Logarithmotechnia; the general series was included in John Wallis's 1668 review of the book in the Philosophical Transactions.
The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding (()) = =, which is a Lambert series with coefficients -1/n. The logarithm of the Euler function may therefore be expressed as
Natural logarithm; Exponential function; Applications; compound interest; Euler's identity; Euler's formula; half-lives. exponential growth and decay; Defining e; proof that e is irrational; representations of e; Lindemann–Weierstrass theorem; People; John Napier; Leonhard Euler; Related topics; Schanuel's conjecture
The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law ( e a ) k = e a k , {\displaystyle \left(e^{a}\right)^{k}=e^{ak},} which can be seen to hold for all integers k , together with Euler's formula, implies several trigonometric identities , as well as de Moivre's formula .
The logarithm of a product is the sum of the logarithms of the numbers being multiplied; the logarithm of the ratio of two numbers is the difference of the logarithms. The logarithm of the p-th power of a number is p times the logarithm of the number itself; the logarithm of a p-th root is the logarithm of the number divided by p. The following ...
'Exponentials and Logarithms’ content, which develops the growth and decay content and the graphs section of GCSE ' Sequences ' content, which uses subscript notation to support the iterative work on numerical methods.