enow.com Web Search

  1. Ad

    related to: dilation formula math term problems geometry pdf notes

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris, France.Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and ...

  3. Dilation (metric space) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(metric_space)

    In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]

  4. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point S called its center and a nonzero number k called its ratio, which sends point X to a point X ′ by the rule, [1]

  5. Dilation (operator theory) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(operator_theory)

    In operator theory, a dilation of an operator T on a Hilbert space H is an operator on a larger Hilbert space K, whose restriction to H composed with the orthogonal projection onto H is T. More formally, let T be a bounded operator on some Hilbert space H , and H be a subspace of a larger Hilbert space H' .

  6. Contraction (operator theory) - Wikipedia

    en.wikipedia.org/wiki/Contraction_(operator_theory)

    The above construction then yields a minimal unitary dilation. The same method can be applied to prove a second dilation theorem of Sz._Nagy for a one-parameter strongly continuous contraction semigroup T(t) (t ≥ 0) on a Hilbert space H. Cooper (1947) had previously proved the result for one-parameter semigroups of isometries, [3]

  7. Geometric invariant theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_invariant_theory

    In mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces.It was developed by David Mumford in 1965, using ideas from the paper (Hilbert 1893) in classical invariant theory.

  8. Conformal geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometric_algebra

    Conformal geometric algebra (CGA) is the geometric algebra constructed over the resultant space of a map from points in an n-dimensional base space R p,q to null vectors in R p+1,q+1.

  9. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. In terms of algebra, a length is constructible if and only if it represents a constructible number, and an angle is constructible if and only if its cosine is a ...

  1. Ad

    related to: dilation formula math term problems geometry pdf notes