enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Charlot equation - Wikipedia

    en.wikipedia.org/wiki/Charlot_equation

    where [H +] is the equilibrium concentration of H +, K a is the acid dissociation constant, C a and C b are the analytical concentrations of the acid and its conjugate base, respectively, and Δ = [H +] − [OH −]. The equation can be solved for [H +] by using the autoionization constant for water, K w, to introduce [OH −] = K w /[H +].

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × ...

  4. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    A strong acid, such as hydrochloric acid, at concentration 1 mol dm −3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH of 14. Since pH is a logarithmic scale, a difference of one in pH is equivalent to a tenfold difference in hydrogen ion concentration.

  5. RICE chart - Wikipedia

    en.wikipedia.org/wiki/RICE_chart

    With specific values for C a and K a this quadratic equation can be solved for x. Assuming [4] that pH = −log 10 [H +] the pH can be calculated as pH = −log 10 x. If the degree of dissociation is quite small, C a ≫ x and the expression simplifies to = and pH = ⁠ 1 / 2 ⁠ (pK a − log C a).

  6. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    C A is the analytical concentration of the acid and C H is the concentration the hydrogen ion that has been added to the solution. The self-dissociation of water is ignored. A quantity in square brackets, [X], represents the concentration of the chemical substance X. It is understood that the symbol H + stands for the hydrated hydronium ion.

  7. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The prime number theorem then states that x / log x is a good approximation to π(x) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without bound is 1:

  8. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The derivative of ln(x) is 1/x; this implies that ln(x) is the unique antiderivative of 1/x that has the value 0 for x = 1. It is this very simple formula that motivated to qualify as "natural" the natural logarithm; this is also one of the main reasons of the importance of the constant e.

  9. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    At half-neutralization the ratio ⁠ [A −] / [HA] ⁠ = 1; since log(1) = 0, the pH at half-neutralization is numerically equal to pK a. Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1.