Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion
The actual values are only computed when needed. For example, one could create a function that creates an infinite list (often called a stream) of Fibonacci numbers. The calculation of the n-th Fibonacci number would be merely the extraction of that element from the infinite list, forcing the evaluation of only the first n members of the list.
That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series. As well as being used to define values for divergent series, Euler summation can be ...
The number e can be expressed as the sum of the following infinite series: e x = ∑ k = 0 ∞ x k k ! {\displaystyle e^{x}=\sum _{k=0}^{\infty }{\frac {x^{k}}{k!}}} for any real number x . In the special case where x = 1 or −1, we have:
Generalizing this argument, any infinite sum of values of a monotone decreasing positive function of (like the harmonic series) has partial sums that are within a bounded distance of the values of the corresponding integrals. Therefore, the sum converges if and only if the integral over the same range of the same function converges.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
The following is an incomplete list of some arbitrary-precision arithmetic libraries for C++. GMP [1] [nb 1] MPFR [3] MPIR [4] TTMath [5] Arbitrary Precision Math C++ Package [6] Class Library for Numbers; Number Theory Library; Apfloat [7] C++ Big Integer Library [8] MAPM [9] ARPREC [10] InfInt [11] Universal Numbers [12] mp++ [13] num7 [14]