Search results
Results from the WOW.Com Content Network
A complex variable or value is usually represented as a pair of floating-point numbers. Languages that support a complex data type usually provide special syntax for building such values, and extend the basic arithmetic operations ('+', '−', '×', '÷') to act on them.
Any floating-point type can be modified with complex, and is then defined as a pair of floating-point numbers. Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header. As with the real-valued ...
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...
Floating-point constants may be written in decimal notation, e.g. 1.23. Decimal scientific notation may be used by adding e or E followed by a decimal exponent, also known as E notation, e.g. 1.23e2 (which has the value 1.23 × 10 2 = 123.0). Either a decimal point or an exponent is required (otherwise, the number is parsed as an integer constant).
Integer addition, for example, can be performed as a single machine instruction, and some offer specific instructions to process sequences of characters with a single instruction. [7] But the choice of primitive data type may affect performance, for example it is faster using SIMD operations and data types to operate on an array of floats.
An alternate form of (2) – the machine successively prints all n of the digits on its tape, halting after printing the nth – emphasizes Minsky's observation: (3) That by use of a Turing machine, a finite definition – in the form of the machine's state table – is being used to define what is a potentially infinite string of decimal digits.
The following is an incomplete list of some arbitrary-precision arithmetic libraries for C++. GMP [1] [nb 1] MPFR [3]