Search results
Results from the WOW.Com Content Network
Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers.
For large power units, dynamic uninterruptible power supplies (DUPS) are sometimes used. A synchronous motor/alternator is connected on the mains via a choke. Energy is stored in a flywheel. When the mains power fails, an eddy-current regulation maintains the power on the load as long as the flywheel's energy is not exhausted.
Eddy currents flow in closed loops in planes perpendicular to the magnetic field. They have useful applications in eddy current brakes and induction heating systems. However eddy currents induced in the metal magnetic cores of transformers and AC motors and generators are undesirable since they dissipate energy (called core losses) as heat in ...
This way, if there is a large current between connector shields, it will not pass through the ground plane of the circuit. A star topology should be used for ground distribution, avoiding loops. High-power devices should be placed closest to the power supply, while low-power devices can be placed farther from it.
These are called eddy currents. On the lefthand side nearest to the other wire (1) the eddy current is in the opposite direction to the main current (big pink arrow) in the wire, so it subtracts from the main current, reducing it. On the righthand side (2) the eddy current is in the same direction as the main current so it adds to it ...
The magnetic Lorentz force v × B drives a current along the conducting radius to the conducting rim, and from there the circuit completes through the lower brush and the axle supporting the disc. This device generates an emf and a current, although the shape of the "circuit" is constant and thus the flux through the circuit does not change ...
Induction heating — Heat produced in a conductor when eddy currents pass through it. Joule heating — Heat produced in a conductor when charges move through it, such as in resistors and wires. Lightning — powerful natural electrostatic discharge produced during a thunderstorm. Lightning's abrupt electric discharge is accompanied by the ...
Jumping rings lift when an AC current energises a coil and the electrodynamic forces pushes the rings upwards against gravity. Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields.