Search results
Results from the WOW.Com Content Network
The material responds to the stress with a strain that increases until the material ultimately fails, if it is a viscoelastic liquid. If, on the other hand, it is a viscoelastic solid, it may or may not fail depending on the applied stress versus the material's ultimate resistance.
A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales (slow deformation), but shows additional resistance to fast deformation.
A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. [1] It is named for James Clerk Maxwell who proposed the model in 1867.
[1] [2] [3] Pitch is a viscoelastic material that is composed of aromatic hydrocarbons. Pitch is produced via the distillation of carbon-based materials, such as plants, crude oil, and coal. [1] [2] [3] Pitch is isotropic, but can be made anisotropic through the use of heat treatments.
A Burgers material is a viscoelastic material having the properties both of elasticity and viscosity. It is named after the Dutch physicist Johannes Martinus Burgers.
Blood is a viscoelastic material, i.e., viscous and elastic because the effective viscosity of blood not only depends on the shear rate but also on the history of shear rate. It is also important to note that the normal blood flows much more easily compared to rigid particles, for the same particle volume fraction.
if the materials behaves as a combination of viscous and elastic components, then the material is viscoelastic. Theoretically such materials can show both instantaneous deformation as elastic material and a delayed time dependent deformation as in fluids. Plasticity is the behavior observed after the material is subjected to a yield stress:
The Ogden material model is a hyperelastic material model used to describe the non-linear stress–strain behaviour of complex materials such as rubbers, polymers, and biological tissue. The model was developed by Raymond Ogden in 1972. [ 1 ]