enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  3. Woodward–Hoffmann rules - Wikipedia

    en.wikipedia.org/wiki/Woodward–Hoffmann_rules

    In short, a set of contiguous atoms and their associated orbitals that react as one unit in a pericyclic reaction is known as a component, and each component is said to be antarafacial or suprafacial depending on whether the orbital lobes that interact during the reaction are on the opposite or same side of the nodal plane, respectively. (The ...

  4. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  5. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization. As s orbitals are spherical (and have no directionality) and p orbitals are oriented 90° to each other, a theory was needed to explain why molecules such as methane (CH 4) had ...

  6. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In particular, Pauling introduced the concept of hybridisation, where atomic s and p orbitals are combined to give hybrid sp, sp 2, and sp 3 orbitals. Hybrid orbitals proved powerful in explaining the molecular geometries of simple molecules like methane, which is tetrahedral with an sp 3 carbon atom and bond angles of 109.5° between the four ...

  7. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    This MO is called the bonding orbital and its energy is lower than that of the original atomic orbitals. A bond involving molecular orbitals which are symmetric with respect to any rotation around the bond axis is called a sigma bond (σ-bond). If the phase cycles once while rotating round the axis, the bond is a pi bond (π-bond).

  8. Sigma bond - Wikipedia

    en.wikipedia.org/wiki/Sigma_bond

    The extent of this mixing (or hybridization or blending) depends on the relative energies of the MOs of like symmetry. 1sσ* antibonding molecular orbital in H 2 with nodal plane For homodiatomics ( homonuclear diatomic molecules), bonding σ orbitals have no nodal planes at which the wavefunction is zero, either between the bonded atoms or ...

  9. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Orbitals with ℓ = 1, 2 and 3 are denoted as p, d and f respectively. The set of orbitals for a given n and ℓ is called a subshell, denoted . The superscript y shows the number of electrons in the subshell. For example, the notation 2p 4 indicates that the 2p subshell of an atom contains 4 electrons.