Search results
Results from the WOW.Com Content Network
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
1.1 Polygons with specific numbers of sides. ... For a broader scope, see list of shapes. ... Hexagon – 6 sides
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.
A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D 3d, [2 +,6], (2*3), order 12. A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.
Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both. This list includes these: all 75 nonprismatic uniform polyhedra; a few representatives of the infinite sets of prisms and antiprisms;
Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers. A hexagonal number is a figurate number.The nth hexagonal number h n is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.
Figurate numbers (1 C, 51 P) T. Theorems about polygons (2 C, 5 P) Types of polygons (4 C, 39 P) Pages in category "Polygons" The following 33 pages are in this ...
The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism ({n/m}#{} where n is odd) or an antiprism ({n/m}#{} where n is even). All polygons in 3 space have an even number of vertices and edges.