Ad
related to: example of a series sentence in algebrakutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The following example in first-order logic (=) is a sentence. This sentence means that for every y, there is an x such that =. This sentence is true for positive real numbers, false for real numbers, and true for complex numbers. However, the formula
For example, in every logical system capable of expressing the Peano axioms, the Gödel sentence holds for the natural numbers but cannot be proved. Here a logical system is said to be effectively given if it is possible to decide, given any formula in the language of the system, whether the formula is an axiom, and one which can express the ...
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The Maclaurin series of the logarithm function (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.
List or describe a set of sentences in the language L σ, called the axioms of the theory. Give a set of σ-structures, and define a theory to be the set of sentences in L σ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields that are true in all finite fields. An L σ ...
In this example, both sentences happen to have the common form () for some individual , in the first sentence the value of the variable x is "Socrates", and in the second sentence it is "Plato". Due to the ability to speak about non-logical individuals along with the original logical connectives, first-order logic includes propositional logic.
Propositional logic, as currently studied in universities, is a specification of a standard of logical consequence in which only the meanings of propositional connectives are considered in evaluating the conditions for the truth of a sentence, or whether a sentence logically follows from some other sentence or group of sentences.
Ad
related to: example of a series sentence in algebrakutasoftware.com has been visited by 10K+ users in the past month