Search results
Results from the WOW.Com Content Network
Circular buffering makes a good implementation strategy for a queue that has fixed maximum size. Should a maximum size be adopted for a queue, then a circular buffer is a completely ideal implementation; all queue operations are constant time. However, expanding a circular buffer requires shifting memory, which is comparatively costly.
A bounded queue is a queue limited to a fixed number of items. [1] There are several efficient implementations of FIFO queues. An efficient implementation is one that can perform the operations—en-queuing and de-queuing—in O(1) time. Linked list. A doubly linked list has O(1) insertion and deletion at both ends, so it is a natural choice ...
Representation of a FIFO queue with enqueue and dequeue operations. Depending on the application, a FIFO could be implemented as a hardware shift register, or using different memory structures, typically a circular buffer or a kind of list. For information on the abstract data structure, see Queue (data structure).
The buffer is a circular buffer (to provide a FIFO instruction ordering queue) implemented as an array/vector (which allows recording of results against instructions as they complete out of order). There are three stages to the Tomasulo algorithm: "Issue", "Execute", "Write Result".
Both stacks and queues are often implemented using linked lists, and simply restrict the type of operations which are supported. The skip list is a linked list augmented with layers of pointers for quickly jumping over large numbers of elements, and then descending to the next layer. This process continues down to the bottom layer, which is the ...
A sample thread pool (green boxes) with a queue (FIFO) of waiting tasks (blue) and a queue of completed tasks (yellow) First in, first out , also known as first come, first served (FCFS), is the simplest scheduling algorithm. FIFO simply queues processes in the order that they arrive in the ready queue.
A double-ended queue is represented as a sextuple (len_front, front, tail_front, len_rear, rear, tail_rear) where front is a linked list which contains the front of the queue of length len_front. Similarly, rear is a linked list which represents the reverse of the rear of the queue, of length len_rear.
Linked list implementations, especially one of a circular, doubly-linked list, can be simplified remarkably using a sentinel node to demarcate the beginning and end of the list. The list starts out with a single node, the sentinel node which has the next and previous pointers point to itself. This condition determines if the list is empty.