Search results
Results from the WOW.Com Content Network
XAS is an interdisciplinary technique and its unique properties, as compared to x-ray diffraction, have been exploited for understanding the details of local structure in: glass, amorphous and liquid systems; solid solutions; doping and ionic implantation of materials for electronics; local distortions of crystal lattices; organometallic compounds
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern.
Typically, powder X-ray diffraction (XRD) is an average of randomly oriented microcrystals that should equally represent all crystal orientation if a large enough sample is present. X-rays are directed at the sample while slowly rotated that produce a diffraction pattern that shows intensity of x-rays collected at different angles.
First X-ray diffraction view of Martian soil - CheMin analysis reveals feldspar, pyroxenes, olivine and more (Curiosity rover at "Rocknest", October 17, 2012). [6] X-ray powder diffraction of Y 2 Cu 2 O 5 and Rietveld refinement with two phases, showing 1% of yttrium oxide impurity (red tickers) X-ray diffraction (XRD) Small-angle X-ray ...
This is an X-ray diffraction pattern formed when X-rays are focused on a crystalline material, in this case a protein. Each dot, called a reflection, forms from the coherent interference of scattered X-rays passing through the crystal.
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.
Usually X-ray diffraction in spectrometers is achieved on crystals, but in Grating spectrometers, the X-rays emerging from a sample must pass a source-defining slit, then optical elements (mirrors and/or gratings) disperse them by diffraction according to their wavelength and, finally, a detector is placed at their focal points.
Compared with destructive techniques, e.g. three-dimensional electron backscatter diffraction (3D EBSD), [5] with which the sample is serially sectioned and imaged, 3DXRD and similar X-ray nondestructive techniques have the following advantages: They require less sample preparation, thus limiting the introduction of new structures in the sample.